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SOLUTION OF THE PROBLEM OF DYNASTIC STABILITY IN A 
COOPERATIVE DIFFERENTIAL GAME WITH SIDE PAYMENTS* 

N.N. DANILOV 

A general sufficient condition for a dynamically stable /l-3/ solution of 
a cooperative differential game with side payments to exist is derived, 
and the dynamic properties of the set of distributionsandthe C-core are 
investigated. The problem of dynamic stability of a distribution from 
the solution of a game is formulated. The solution of this problem is 
an allocation function (af) satisfying the condition of dynamic stability 
of the distribution (the optimal af). The notion of an initial allocation 
function is introduced. A method of computing the optimal initial af is 
developed. The method is applied to a three-person game with integral 
transferable payoffs, when the solution of the game is defined as the set 
of distributions, the C-core, and the Shapley vector. 

1. Statement of the problem. Consider an n-person differential game C(z,, T 
of prescribed duration T - to, 

.r- = f (5, ttl, . . ., u,), 5 E f?*, 5 (to) = l@ 

Ji(q),U1,.‘., un) = 1:: hi (x(t)) dt f Hi (x(T)) 

- to) 

W) 

(1.2) 

Here and henceforth, unless otherwise specified, i = 1, __ ., n; t 6% It*, 2% 
An admissible control of the player i isanyfunction uf Lebesgue measurable in It,, Tl 

which, for every t, satisfies the condition ur(t)E ut (Ui C Rmi is a compactum). 
Regarding system (1.1) we assume that for any initial values X,EP and any combination 

(% . . .t u,) of admissible controls it has a unique solution r (*) continuable in It,, 2'1. 
In order to simplify references to system (l.l), we will denote it by z (x0). 

Let N = {l,...,n} be the set of players. We assume that the rules of the game allow 
the formation of coalitions SCN and that the payoffs are transferable between players /2/. 

The characteristic function (cf) is the mapping v: 2x x W' x R,'-+ R’ (R,’ is the non- 
negative real half-linefwhieh associates with each coalition SE ZN and each initial pos- 
ition (xor T - to) f R” X R+’ a real number Y (S;xo, T - to) equal to the payoff secured by 
the coalition S in the game l?(&,, ?'- to) (irrespective of the actions of the players from 
the set N\S). 

we assume that u(@;sO, T-to) = 0 and 

(here sup is over the direct products of the sets of admissible controls of all players). 
JJ(N;x~, T - to) is the maximum payoff of the coalition N in the game r (x0, T - to). 

The vector f" = (&,', . . ., &,“), satisfying the conditions E1" > v (t; 20, T - to) (individual 
rationality), E"(N) = v(N;x,, T - td (collective rationality) is called a distribution 

(here and henceforth, 

w know /4/ that 

g0 (S) = &&“. S c N). 

the vector 5"~ R” is a distribution if and only if 

ft" = Y (i; zoJ T - to) + ato 

alo 2 0: cc0 (A') = v (N; x0, T - to) - &,, u (i; x0, T - to) 

(1.3) 

(1.4) 

The vector cc" = (ale,..., u,O) satisfying the conditions (1.4) will be called a side 
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payment vector. 
The triple ro(xO, T - tO) = <z (x0), N,u> will be called a cooperative differential game 

with side payments. The game rV(xO, T -to) in which the cf is superadditive in S, i.e., 

v (8; x0, T - to) + v (Rx,, T - t,) < v (R u s; 50, T - to) 

S,RcN:SnR=@ (1.5) 

is called essential, We will consider only essential games. 

2. Dynamically stable principles of optimality. Let J&,(x0,2'--t,,) denote the 

set of all distributions in the game rV(xO, T-to). For a superadditive cf a0 (N) > 0, and 
we thus have E, (x,, T - t,,) # @. 

Let W,: rU (x0, T - to)+= WV (x0, T - to) be the mapping associating with each game I'*(x,, 

T - to) a subset ’ WV (z,, T - to) c E, (xoc T - to), which is called optimal. The mapping W, 
will be called a principle of optimality, and the set W,,(z,,, T - to) will be called a solution 

of the game I?, (x0, T - to). 
Let x(.) be some trajectory of the system X (x0). Embed the game ru (x0, T -to) in a 

family (by parameter t) of similar games {i',(x(t), T-t), to< t< T), where r,(x(t), T-t) = 
<x (x(t)), N, u). By definition, W, (x (t), T - t) c E, (z(t), T - t). 

Any trajectory Z(.) of the system 2 (x0) such that 

ziEN li(~(.))=u(N;x,,T--t,) 

will be called conditionally optimal. Here 

Definition. Let WV (x0, T-t,) + a. The distribution 5"~ W,(z,, T-to) is called 

dynamically stable if there exists an n-vector function p(.) integrable in [to, Tl such that 

(2.1) 

hN @ tt)) = h, tz @)I + . . . + k, (z (t)) 

I31 (4 + . . . + B, (t) = 1 (2.2) 

The solution W,,(x,, T -to) is called dynamically stable if all the distributions E" fz? 

WV (x0, T-to) are dynamically stable. In this case, the trajectory 7 (.) is called optimal. 
The condition (2.2) guarantees the equality 

If together with (2.2) we have 

Br (t) > 0 (2.3) 

then Pi W in (2.1) are weights. In this case, the fraction of each player in the "total 
payoff" hN(Z(t)) is non-negative for all t. 

Theorem 1. iLet hjv (5 (t)) #O. For the solution Wy(xo, T - to) of the game ra(xO, T - to) 
to be dynamically stable it is sufficient that the following conditions are satisfied along 

the conditionally optimal trajectory z (a): 

1) Ww (5 (t), T - t) # 63; 
2) for each distribution 5" E W,, (~0, T- to) there exists a function E' differentiable 

with respect to t such that 

5' E W,. (3 (t), T - t) and 5'. = 5". 

Proof. Let 5” E W, (x,,, T - to), and let 5' E W, (Z (t), T -t) be the distribution function 
differentiable with respect to t such that 5'. = r. Construct the vector function 

d 
6 @) = - thN @ @))I-’ x (5”) (t (2.4) 

The function (2.4) is integrable in [t,,Tl and satisfies the conditions (2.1) and (2.2). 
Indeed, 
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z,,, pi (t) = - [hN (3 (t))l-‘-& [u (NE (43 T - 41 It = 

: [kN (3 (t))]-‘4 [ST hN (5 tz)jdz -+- .c,,, Hi (’ (T))] If= 1 

f- f!~ (T) hN (3 (T)) dT + H (3: (T)) = f; @,’ + H (z (Tf) = g’ 

The condition (2.1) is a direct consequence of the equality (2.5). Since the distribution 

5"Ez w, (50, T - t(l) is arbitrary, the solution W,(+T - to) is dynamically stable. 
Note that if the vector function B (-1 can be chosen to be continuous in It,, Tl, then 

the conditions of Theorem 1 are also necessary. 

Corollary. In addition to the conditions of Theorem 1 let hN@(t))> 0 and let the func- 
tion E' in condition 2bemonotone non-increasing. Then for each distribution 5" E @'a (x,, T - 
tO) there exists a vector function B (*) which satisfies theconditions (2.1)-(2.3). 

In some cases, the solution W,(z,, T-to) is a convex, closed, polyhedral set (see 
below, Sects.3 and 4). 

Theorem 2. For dynamic stability of the solution Wli(xg, T - tc) which is a closed, 
convex, polyhedral set, it is necessary and sufficient that its extreme distributions are 
dynamically stable. 

Proof. The necessity is obvious. Let us prove the sufficiency. Assume that Wv(xO, T - 
te) has f extreme points %rr,... r>‘. For any distribution E"E Wu(~,, T-to) there exists 
a single-value representation ?$'= h,r,r f . . . +&PI”, where h,>O, k=l,. . .,I; A,+. . . + 
a, = 1. By the dynamic stability of the extreme points, we obtain 

(2.6) 

Et*RfWv(.i:(t),T-t), k=l ,..I, 1 

Let 

8@) = xi=, ~~~k(~). f'= 2, %@ 

The vector Et belongs to the set W,@(t), T-t) because the latter is convex, and &(t)$. 
. . . + Bn 0) = 1. Thus, from (2.6) we obtain that the distribution E" is dynamically stable. 

3. The set of distributions. In this section, the solution W,,(x*,T - to) of the 

game r. (x0, T - &J is the entire set of distributions & (30, T - t3. 

Lemma 1. The set of distributions EO(sO, T-to) is a convex, compact subset of the 
space R" with n extreme points of the form r*k = (&~kr...rE~k), k = 1, . . ..n. where 

fg.k= 
t 

u(k;~~,T-t~)+ff*(~), i=k 

v (i; x0, T - toX iEN\ 
(3.1) 

Proof * We use the shorthand notation So = E&, T - to), vfs: x,, T - to) = v(S). The set Ea is 
convex and compact in Rn as the intersection of the hyperplane P(N)= vfN) with the convex 
polyhedral domain 0: &"a u(i). The domain Q, being the intersection of n half-spaces in R", 
has n(n-1). -dimensional faces, and the point n = (~(i),...,~(n)) belongs to each of these 
faces. The set Eli is not identical with any of the (n- i)-dimensional faces of Q, because 
otherwise the vector n would be a distribution, which is impossible in an essential game. 

We will show that all vectors of the form EmVk are extreme points of the set& Clearly, 
each vector eoek, k=i,..., n, is a distribution (see (1.3)-(1.4)). Assume that the vector &Oqk 
is not an extreme point of the set Eo. Then there should exist two different distributions 

p", % E Es with components i;iO = u(i) + ai", &0x v (i)+ a'p,t= i,...,n, where &#> for at least 
one i=N and which satisfy the equality I%+(l-_)~O=E"k,O<I<f. Hence for the k-the com- 
ponents of the distributions %,p,E"*k we should have the equality 

li&O+(i-h)&O=Ek"k, O<b<i (3.3) 

If &7r" = o;kO, then from (3.2) we obtain &'= v(N)-&NV(t)= &". This means that ;,o = 

_ 
a‘* = 0 for all rEN\tkf and so p=f"= F'k_ We should therefore have ak"=#=a"ke, and 

thus 

ekO, c;k'<u V) - r&N* (i) (3.3) 
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From (3.2) we have 

If &"> z&o, then using (3.3) we obtain that the last fraction is greater than 1,which 
contradicts the condition h<i; if &" < c&O. then the last fraction is negative (because its 
numerator is positive), which contradicts the condition h > 0. Thus, the assumption is false, 
and each of the n vectors E'vk, k= i,...,n with the components (3.1) is an extreme point of 
the set E,. 

We will now show that apart from the points 6"" k= i,...,n, there are no other extreme 
points in E,. To this end it suffices to show that any distribution of the form E"= (u(~)+cQ~, 
i = i, . . ..n).where ~i"<e"(N) for all i=i,...,n and a~"> 0 for at least two indices i, is 
not an extreme point of the set E,. Consider n distributions CO*', k = i, . . ., n whose components 
are defined by the equalities (3.1) and the vector h with the components li = ar"/a"(N). In an 
essential game a"(N)>O. We can verify that 

~;=la,--i, o<k,<i, k--l,...,n 

and for each k such that at">0 we have hk > 0. Thus, the distribution 5" is notanextreme 
point of the set Em. In order to complete the proof, it remains to note that among the vectors 

E '. k , k = 1,. , ., n, which are extreme points of the set E, no two vectors are equal (otherwise 
the game would be inessential, see (3.1)). Thus, E. has precisely n extreme points. 

As follows from Lemma 1, any distribution E"E E,(q,, T-to) is uniquely representable 
in the form 

(3.4) 

where ho = (1L:,...,q) is a vector from the n-dimensional standard simplex 

n={aER"Ihk~,_,k=l,...,n;~~_,hk=l}. 

In (3.4), the numbers Alo, . . ., A,” are the barycentric coordinates of the vector E" in 
the set E, (z,, T - to). We can show that for each &'E A the vector (3.4) is a distribution. 
Conversely, for each distribution YE E, (x,,, T-to) there exists a vector h"E A, which 
satisfies the condition (3.4). Hence we obtain the representation 

-% (~0, T --to) = (5" (a)Ew IKE A) (3.5) 

Consider the set-valued mapping (I, T - t)+-E,,(x, T-t) which with each initial position 

(I, T - t) associates a convex compact set of distributions in the game r. (x, T - t). 
Let 3 (-1 be a conditionally optimal trajectory in the game r,,(x,, T-to). Define 

the set X(x(.))= ((5, T-t) 1x = Z(t), t,<t< T}. Let px be the Hausdorff metric induced by 
the metric 

Lemma 2. Let the cf v be continuous on the set X@(e)). Then the mapping (z, T - t)+ 

Em (5, T - t) is continuous by inclusion (in the metric px) on the set x (5 (*)). 

Proof. Continuity of v implies continuity of the extreme distribution functions Et*", 

k = 1, . _ ., n: 

E:'k={V(i:i(t),T-f), 
u(k; r(t), T - t)+ a'(N), i = k 

t=N\{k) 

Therefore, any distribution function E'= Et&)= :(5)(;(t), T- t) is continuous on X G (.)). 
This means that for each fixed ZEA and any e>O there exists & = 6(e,K);)>0, such that 
II E (x) (;V'), T - t') - E (0 (; (1'). I - t")l! < e, whenever II ;(t’) - i 0’) II < &, It’ - 1’1 < 6,. t’, t* E [to, ~1. 
Fix some distribution gr' = Err(%) E E, (; (t'), T - t') and take the bound 

(here we have used the representation (3.5)). Hence 

*UP inf 
Et’EEv (!Z (1’). T-t') EthEl; (2 W). T-t”) 
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whenever 

11; (t') - ; (0 II < 6, It' - f"1 < b, f , 1” E [to, l-1, 6 = Inill (6 (E, h), 
h E A} 

(3.6) 

Similarly we obtain the bound 

SUP illf 
ErelE, (f(f), T-:2-) Ef'eES (X (t') T--t') 

P (E". E'") < a 

Thus, px (E, &(t’), 2’ - t’), E, (; (Y), T - t")) < E whenever (3.6) hold. 

Let H,@(T)) =&, H,(s(T)). 

Lemma 3. Let hi (.E (t)) #0 and let the function v(i;~(t), T - t) be continuously dif- 
ferentiable with respect to t. Then every distribution 

is representable in the form 

E" = (Et,. .., E,“)EE, (J,, T _ to) 

Ej” = ST Pi (t) h,v (W) dt + Hi (” (TN (3.7) 

where B (.I = (PI (+), . ., Pn (.)) is a vector function integrable in It,,, Tl that satisfies the 

condition 

/I,,, Pi (4 = 1 (34 

Proof. There exists a vector h"=(h,",..., h,“) t A, such that 5" = r(a") =x;=, ?.kojY.k, where 

5 * h'; h- = 1,. .( n, are extreme points of the set E,(z,, T_ to). In the interval Ito.Tl construct 
the vector function fi (.) = (bl (.), ., fin (.)), 

(3.9) 

$ [U (ii 2 (s), T - s)l it) 

The function (3.9) are integrable in C&,, Tl. We will show that the vector function s (.) 
satisfies the condition (3.7). The integral on the right-hand side of (3.7) is 

Vi; h,(~(~))d~+~i'.~~~[~ltN~(~;~jJ).T--g)]IIdl- 

s 

Td 
tOz [u (i; .Z (s), T - 8)) It dt 

Using the definition of a conditionally optimal trajectory, the continuity of the 

integrands in the second and the third integrals, and finally the additivity of the function 

c' (S: L(T). 0) in S, we obtain that the right-hand side of the equality (3.7) can be written in 

the form 

Ai" [u (.Y; 10, T - to) - H, (z (T))l- Ajo x:I,Nu (i; *o, T - to) + 

u (1; 10, T -to) + i,'&,, u(i; z(T), 0)- "(i; z(T), 0) + H,@(T)) = 

u (1; G,, T -to) + h;" [u (IV: 50. T-to) - &, u (G so, T -b)] 

It follows from (3.1) and (3.4) that the right-hand side of the last equality is equal 

t0 Ei". Therefore, equality (3.7) holds for the vector (3.9). We can verify that the equality 

(3.8) also holds for the vector (3.9). 
The vector function B (.) satisfying the conditions (3.7)-(3.8) will be called an 

allocation function (af) for the distribution E". 
We can show that "sufficiently many" afs exist for each distribution. 

Theorem 3. Let hi (z (t))# 0 and let the cf u be continuous on the set X (z(.)) and 

continuously differentiable with respect to t. Then the set of distributions E, (G,, T - to) 
is dynamically stable. 

Proof. In an essential game, E,(r(t), T-t)+ c. The conditions of the theorem enable 

us to apply Lemmas 2 and 3. Therefore for each ‘YE E,(r,, T-t,,) a continuous distribution 

function 5' =E,, (z (t), T - t), E$ = E” exists. This function is differentiable. Thus, the 

conditions of Theorem 1 are satisfied if we take W, (z (t), T - t) c E, (z (t), T - t). 

4. C-core. In this section, the set W,(z,,, T-to) is the C-core C,(X,,, T -to,) of 

the game rv (z,, T - t,,). Recall that r E C,(zO, T - to) if and only if 



5” (S) 2 v (S; xg, T - to), S c N 
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(4.1) 

u’ (S) = v (S; z (t), T - t) - xfEs v (i; LZ (t), T - t), S c N 

LC?nmm 4. For the C-core c,@(t), T -t) of the game I',@(t), T-t) to be non-empty, it 
is necessary and sufficient that vectors hi A, exist such that 

“ES hi 2 ( : (S) [a',(N)]-1, 
ISI= 
1s I> 1 (4.2) 

(for ISI=n, (4.2) reduces to an equality). 

Proof. Necessity. Let C,(Z(t), T-f)+@. By (4.1), for each Sf E c, (f (t), T - t), 

E' (S) > c (S; z (t). T - t), s c iv 

The components of the distribution Et can be represented in the form 

Si' = c‘ (i; z (t), T - t) + hi& (‘V) 

Substituting (4.4) into (4.3), we obtain (4.2). 

(4.3) 

(4.4) 

Sufficiency. Consider the vector Et = (EI1, _, 5,‘). whose components are given by (4.4), 

where hi satisfy condition (4.2). We have 

52 > L’ (i; 2 (4, T - t); 9 (N) = c (N; P (f), T - 1) 

5’ 6s) > L’ (S; z (4, T - t), s c N 

Therefore the vector 5' is a distribution in the game r"@(t), T-t) and belongs to its 

C-core C, (T(t), 7. - Q. 
Assume that c, (Z(t), T - t)# @ and consider the set-valued mapping (5, T - t)-+ C, (I, 

T - t) which associates with each initial position (5, T - t)EX(E(*)) a non-empty C-core 

CV(z, T - t) (is closed, convex set) of the game I?* (I, T - t). 

Lemma 5. Let C, (3 (t), T- t) # 0, and let the cf v be continuous on the set X (5 (*I). 
Then the mapping (I, T - t)+ &(I, T - t) is continuous by inclusion (in the Hausdorff metric) 

on the set X (z (.)). 

Proof. We have to show that for any E>O there is 6 (e) > (1 such that 

Px (C, (2 (0, T -09 C" (4(t), T-f)) < F (4.5) 

whenever 

II z 0’) - 3 (t) II < 6 (&I, I t’ - t I < 6 Cd, t’, t E Ita, Tl (4.6) 

The inequality (4.5) holds if and only if for any e>O there is s (E) > 0 such that 

1) for each St E C, (z(t), T - t) there is 5" E C, (z (t’), T - t’), such that p (Et, E') c; e, 

2) for each 5' E C, (Z (t’). T - t’) there is 5' E C, (z (t), T - t), such that P (f', 5') <E, whenever 

(4.6) holds. 
Let us prove 1). Since the set E,(z(t). T-t) is continuous by inclusion (Lemma 2) for 

every 5' E C. (z (t), T - I) and any e>O there exists a distribution 5" E& (z (t’), T - t’), such 
that 

P (E', 59 <E (4.7) 
whenever (4.6) holds. Assume that for all 5" Satisfying (4.7) we have k*'e C,(z(f'), T - f'). This 

means that 
0, (f') n cv (3 to T - t7 = 0 (4.8) 

where 0, (5') = (11 I p E’,q) <e) is an e-neighbourhood of the distribution 5'. Let '1" be the 

orthogonal projection of the distribution E_f on the set C, (2 (t'), T - t’), 

P (EL. 4l') = min P (E', I") 
E”EC~ (3 (1’). T-t’) 

By the compactness and convexity of the set C, (Z (t'), T - t'), the point q*'. exists, is 

unique, and lies on its boundary. Hence there follows the existence of a coalition S* CN 
such that q" (S*) = c (S*: z (t'), T - I'). From (4.8) it follows that p (E', .q") > e, whence we obtain 

the bound 
51 (SD) < 1*' (SC) - e,, 0 <e, < 1 s* 1 Me (M - const> 0) (4.9) 

By the continuity of the function u(s*;+(t), T-t) in the interval Ito, Tl, we can choose 
e>O so that 
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1 i (S’; z (f), T - t) - L’(s’; z (L’), T - f) 1 < F1 

From the last inequality and the relationship (4.9) we obtain Et (S*) < u (S*; z (t), T - t). We 

haveacontradiction: since E' E C, (2 (I), T - t), we should have E1 (S) > c(S;z(t), T - t), S c N. There- 
fore, assumption (4.8) is false and we have proved proposition 1). Proposition 2) is proved 

similarly. 
The following theorem is a corollary of Lemmas 3 and 4 and Theorem 1. 

Theorem 4. Let hx(.~(t))# 0 and let the cf u be continuous on the set X (z(.)) and 
continuously differentiable with respect to t. Then for the dynamic stability of the C-core 
it is sufficient that condition (4.2) holds. 

5. The problem of dynamic stability. Let 5°F E,(q,, T-to). Define the set (see 

Lemma 3) 

H (3 (TN; PI@) + . . . + Bn (t) = I} 
where p(.) is the af for the distribution 5". Informally, B (E") is the set of all afs for 

the distribution 5" along the conditionally optimal trajectory 3 (*). 
The final outcome of the game is always a single distribution. Assume that the players 

have agreed to implement the distribution f" E w, (&l, T - to). Since this distribution is 

realizable only if it is dynamically stable, the players have to solve the following problem 

of the dynamic stability of the distribution E (problem DS) . 
Problem DS. Find a dynamically stable realization of the distribution 5" E WV (ZO, T - to) 

in the time interval It,,, T] along the optimal trajectory z (*). In other words, from the 

set B(r) select a vector function $(.) such that 

(5.1) 

The solution p(a)5 B(E”) of this problem is called the optimal af for the distribution 

E". 
The solution of problem DS exists only if the distribution 5" E WV(zO, T - to) is dynamic- 

ally stable. 

6. Initial af. As follows from formulas (3.1) and (3.4), for each distribution 5" = 

Go* . . . . E,,“) there exists a unique vector h"~ A such that 

51" = u (i; 50, T - to) + h*W (N) (6.1) 

From (6.1) we obtain expressions for the barycentric coordinates hlo, . . ., h,” of the 

distribution E" on the set E,(zOr T-to): 

hi" = [d(1V)]-l(~*" - u (i; x0, T - to)) (6.2) 

Construct the functions 

a,' = h,%'(N) (6.3) 

Clearly, 

ff = (v(i;+ (t), T -t) -1 a,', i = 1, . . . , n} E E,,(Z (t), T - t) (6.4) 

Assume that the cf v is differentiable with respect to t on It,,, TI and construct the 

vector function F" (.) = (PI" (.), . . ., fin0 (.)), 

pi”(t) = - [h‘v(Z (t))]-’ $ [u (t; 3 (4, T - s) + a,‘] It (6.5) 

Applying (6.3) and (6.4) we can verify that 

the distribution E". 

r(.g,T)B(E"), i.e., r(s) is an af for 
Noting that the vector function . is computed from the barycentric 

coordinates alo, . . ., I.,” of the distribution 5" (see (6.5), (6.3) and (6.2)) in the initial 

set of_ distributions E,(zo, T-t,,). the af p"(.) will be called the initial af for the 

distribution 5". 
Letusinvestigate the question of the optimality of the initial af for the set of dis- 

tributions, the C-core, and also the Shapley vector. 

First we use the entire set of distributions as the solution of the game rs(zO, T -to). 

Theorem 5. For any dynamically stable distribution 5"~ E, (z,,,T - t,,), m its initial af 

is the optimal af (the solution of problem DS). 

Proof. Consider an arbitrary distribution 5" E E, (z,, T - t,,). Let go (*) = (B1O (*), . . .1 
f&O(-)) be the initial af of this distribution. Integrating the equality (6.5) on [t, T] and 
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using the relationship ai r = 0, v (i; z (T), 0) = Hi (Z (T)), we obtain 

I, 2 ST B:(T) hiv (3 (z)) dz + Hi (Z (T)) = v (i; r (t), T - t) + ait (64 

Let h,", . . ., 1 sno 
T - to). 

be the barycentric coordinates of the distribution f" in the set &,(x0, 
Substitute in the last equality the value of ait from (6.3). Since 

A, the vector E' with the components 5: = v(i; I, T-t)+ h?&'(N) 
(ht, . . .,h,") fE 

is a distribution in 
the ,;;ent game r,, (" (t), 2' - t). Thus, from (6.6) it follows that ZE E, (r(t), T - t) (Z =(I,. 
. . . . n. 

Now take the C-core as the solution of the game ry(x,,, T - tO) 

Theorem 6. For the initial af B" f-) of the dynamically stable distribution E" from 
the C-core C,, (x,, T - tO) to be optimal (a solution of problem DS) it is sufficient that for 
each coalition ScN the ratio a’(S)[cc’(N)l-’ is monotone non-increasing with time along 
the trajectory z(a). 

Proof. Let hlo, . . ., 1,’ be the barycentric coordinates of the distribution f" E c, (% 
T - to). BY Lemma 4, 

8,,, AT > a” ($1 [a” (N)]-l, S c N 

Since 0~' (5') [a* (N)]-r, is monotone non-increasing, we obtain 

~i,,t~(i;~(t),T--)+htD~~(N)]~~(S;~(t),T--f), SC&' 

Therefore, at the instant t there exists a distribution 

E'Z@1'?..., En'): &' = v (i; f (t), T - t) + &5x1 (iv) (6.3 

that belongs to the C-core c, (Z(t), T-t) of the game r,@(t), T - t). Differentiate equality 
(6.7) and divide both sides of the resulting relationship by h~(z (t))# 0. Using (6.3) and 
(6.51, we can write 

Pa @ w-1 -g (fi”) It = - B*“(t) 

Hence we have &' = It (Ii is defined by equality (6.61). Thus, Z = (II,.. .,I,) e &(.z Q), 
T - t). 

Theorem 7. For optimality of the initial af B" (*) of the dynamically stable dis- 

tribution E"E Cu(xO, T-t,,) it is sufficient that the barycentric coordinates of the dis- 
tribution 5" in E-(x,, T-to) satisfy the condition 

In other words, for optimality of PO(*) f or the distribution E" E C,, (r,,, T - ts) it 
is sufficient that at each instant of time t there exists a distribution 
whose barycentric coordinates in &(z (t),,T 

6' E C, (e (t). T - t), 
-t) coincide with the barycentric coordinates of 

the distribution 5" in &(~a, T-t,,). 
Theorem 7 is proved in the same way as Theorem 6. It provides a relatively simple 

criterion for checking the optimality of the af for the distribution E" from the C-core: it 
suffices to check the conditions (4.2) for the barycentric coordinates of E". 

We now give an algorithm that solves the problem DS for the case when its solution is 
the initial af: 

1) compute the barycentric coordinates of the distribution E"E Wv(xO, T - to) in the 
set E, (x.,, T- to) (using formula (6.2)); 

2) find the form of the side payment functions ai', i = I,...,n, defined in ft,, Tl and 
corresponding to the distribution e0 (using formula (6.3)); 

3) find the initial af PO(+) for the distribution 5 (using formula (6.5)). 

7. Shapley vector. Let W,, (2,. T - te) be the Shapley vector W (xa, T - to). In the 
current game I’, (I: ft), T - t) its components are calculated from the formufa 

ai” (z (t), T - t) = us,,:,,, @ - ’ ’ “b;’ ’ ’ - ‘) ! x 

[u (S; E (tf. T - t) - u (S \ (0; z (t), T - t)] 
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Construct the vector function fi (.) = (PI (.), . . . . fin (.))t 

Pi (4 = - IJZN (” @))I- $ Pi” (-” (s), T - s)] It (7.1) 

Theorem 8. Let the vector function @"(r(t), T-t) be differentiable with respect to t. 
Then there exists a unique optimal af (the solution of problem DS) for the Shapley vector 

@" ($1 T - to) whose components have the form (7.1). 

Proof. In each current game, the Shapley vector exists and is unique. Therefore its 
dynamic stability implies that 

@” (% T - to) = s: p (I) hN (3 (T)) dt + @” (5 (t), T - t) (7.2) 

Using the equalities 

r’i~~~)iY(Z(t),T--)=v(N;5(t),T--), @“(E(T),O)=H(Z(T))~ 

we obtain for the functions (7.1) 

z 
‘EN Pi(t) = 

- [hN (d @))I-’ $ [ 1’ h,y (z (T)) d-c t- HN (.z (T))] It = 1 

s’ L” p, (0 IZN (z (t)) dt+ Hi (z (T)) = 

-ST .” - t, do,, (5 (t), T - t) + Hi (z CT)) = @i” (q,, T - to) 

Therefore, the vector function P (.) with the components (7.1) is an af for 0," (% 
T - to). The vector function P (.) is a solution of problem DS for a,"(~,, T - to), because 

it reduces equality (7.2) to an identity. The uniqueness of the optimal af follows from the 

uniqueness of the Shapley vector in each current game. 

8. Solution of problem DS for one three-person game. Consider the three-person 

differential game described by the equation 

z' = U1 + Uz + Q> 5 (to) = 0, t, = 0 

r = (I(l), Xc*)), Ui = (z+(l), ZQ'): (1 ui 11 .< 1, i = 1, 2, 3 

The payoff functions have the form (a;, bi, Ci are non-negative constants) 

(8.1) 

Admissible controls are the functions ui Lebesgue measurable in It,, TI such that at 

each instant t F [t,, T1 1) ui (t)II < 1. 
Let us construct the cf U. To this end, for each coalition .Y c iV' consider the zero- 

sum game riV (z,, T - to) between the coalitions S and N\S, which is defined as follows. 

The game dynamics is (8.1). We use piecewise-programmed strategies (PPS) /2/ as the admissible 

strategies vs and ~~1s of the players S and N\ S in the game rs'. The set of PPS 

of the player S (N\ S) is denoted by Ds(D,v,s). The payoff of the player S (the maximizing 

player) in each situation (cps, (p,v\s) is defined as -S(z (T), y), where 5 (T) is the final 

point of the trajectory r(.) = z (.; x0. RX. (P‘V\S) of the system (8.1), y~f?, and 0 is the 

Euclidean metric. Since the right-hand side of Eq.(8.1) is "separable" in the controls and 

the integrands in (8.2) are continuous in R?, then for each s>O there exists and E- 

saddle point (cps", (p%\s) and the value 

valrsY(zO, T - to) = lim J (.ro.(pse, cp&s) 
e-0 

For each coalition SCN define the set 

Yi-fQ (z,) = {y E R' 1 val r$ (so, T - to) = u) 
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Let 

Lemma 6. Let rs (t,) > 0. For each PPS mx\sE DN\S and each point YE P (x0, rs (Q) 
there exists a PPS r&eW,, attaining the point y (a point y is attained in the situation 

(% cPiv\S) if z (T; %  %r vN\S) = Yh 

Proof. Assume that the player N\S chooses the PP.5 v~,~=(A~,~,~~,~). Construct the 

PPS 9s = (As, as), where As = (to = tF<.. * < ttt = T}, as = (asOr . . ., a$ ), 0s’: (tk hs , z(tr k!? 1) - us. ii “s Ii a 
1 s 1, k = 0, . . ./ 1s. in the following way: As:= A,,, and 

ask (2) = -u;,s fs) +- w, Vz E R", k = 0,. . ., Zs (3.3) 

I/ -20 
O"_-_ Y = R (~0, rs (lo)) 

Since 

4 
I~n-~ur--sJ~~~~~"o)=IsJ--i‘~\SI 

then 

and the relationship (8.3) is thus well-defined. 
For the pair of PPS k9* (PN,S) I we obtain from (8.1) .z‘= m, or 

IT 
z(T)= ZO-t-fT 

s 
t (y’-%)dt=Y 
0 

Corollary. Let rs (to) > 0. Then 

Y?' (G) = Ix E R2 111 ~112 < rs2 (4,)) # 63 (8.4) 

Proof. By Lemma 6, 

it; ,Ws@W; ~0. 'p,, 'Pi,& Y) =‘A VY E R(+o. rS(fo)) 

Since the right-hand sides of (8.1) are separable in controls, we may interchange inf 
and sup, so that 

val PsY f+l, T .- to) = 0, Vy E R fzO, rs (to)) 
val rs* (x0, T - Q > 0, VY e R (zg, rs (lo)) 

Therefore (8.4) holds. 
Since the inequality rs(t,)< 0 is equivalent to the inequality rN\s (to)> 0, then (8.4) 

remains valid when S is replaced by N\S and rs (to) by riv\s (to). 
Now define the cf 

marZrsJi, lSl>l~V\Sl 

v(S;s,,T--&J= minITiES Ii, lS)<lN\,Sj (8.5) 

0, S=@ 

where Jt is the payoff function (8.2), the operations mar and lnin are over I$-'* (x0) and 

yz& (x0) t respectively, 
For each coalition SC iV, let 

us =(&,u&?), z&a 0)') = &U\')'), ?n = 1, 2 

aS = &,S air $ = &S bi, cs = z]i, Ci 

Compute the conditionally optimal trajectory 2 (.) = S(.; $0, CN): 

Using Pontryagin's maximum principle, we obtain 
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Hence 

For the maximum coalition N we have 

u (N; z (t), T- t) = -& I/d + b.,+ (P - t*) + 

[(aaxf’ + bfi.$’ -j- c~) - 3 I/a% + b$ tal (T - t) 

Similarly we find 

Lemma 7. The cf v defined by Eq,(8.5) is superadditive in 5'. 
The lemma is proved by substituting the values of the cf u into (1.5). 
Thus, on the basis of the game (8.11, (8.2) we have defined an essential cooperative 

game fU(bO, T - t,f in the form of the cf (3.5). 
Since the conditions of Theorem 3 axe satisfied, the set of distributions E, (~0, T-to) 

in this game is dynamically stable. 
For a three-person game, the condition (4.2) for the C-core C,@(t), T -1) to exist is 

equivalent to the inequality 

This condition is obviously true in our case, and so C,('P (t), T- t)+ @. All the con- 
ditions of Theorem 4 are satisfied, and therefore the C-core CV(xO, T - to) in this game exists 
and is dynamically stable, 

Thus, ifthesofution W~f~o, T- tD) of the game ro(zg, T- te) is defined as the entire 
set of distributions or the C-core, tbeconditionally optimal trajectory ~3j.f is optimal. 

Applying the algorithm of SecL6, we will solve problem DS for the set of distributions, 
the C-cure, r;md the Shapley vector. 

In (8.2) let T=1:a,=l,a,=2,nt=0; b,=2. b,=b,=l;c,=lO,cs= f5.c,=5. For these 
numerical values, we calculate (to two decimal places) 

v* (N) = 37.50, 8 (1) = 8.88, V0 (2) = 13.88, v*(3) = 4.50 

v"f@,Z)) = 27.12, u"(fi.3]) = 16.53, d(Q.3)) = 21.41 

where v"(S) = s(S: G. T- t,). At an arbitrary instant 6es[O,ii we have 

hN (s(t)) =x;* (u$!(')(t)+ b@*)(t) f et) = 151 -f- 30 

V' (N) = 7.50 (1 - I") + JO (I - t); Yf (1) = -7.7W - 1.16L + 8.38 

3 (2) = -7.12P - 6.761 -i_ 13.33, o'(3) = --2.99tP - 1.601 + 4.50 

d((1,2)) = -1ft.48P - 26.6& + 27,t2 
yf ({1,3)) = -7.42r‘ - B.l(if + S6.58 
v'({2,3}) = -6.99P - 1&42t+ 21.41 



where Uf (3) = " (8; 1 (t), T - f). 
Let us solve problem DS 

Compute the barycentric 

for the distribution 

f" = (10; 20; 7.50) = E. (so, T - t,) 

coordinates of the distribution (see (6.2)) 
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(8.6) 

Find the side payment functions aif, i= i,2,3 (using formula (6.3)) corresponding to the 
distribution &" (i.e., for t=o we should have w = v(i; zO, 2' - to) + c$, i = i, 2, 3) 

aIt = X1" [v (iv; I (f), T-t)- ~,&v(i; Z(f), T - 1)] = i.l2t* - 2.241+1.12 

Similarly, at* = 6.12P - 12.24t + 6.12, a3* = 3P - 6t + 3. 
Find the initial af (see (6.5)) 

fh”(‘) = -[hi (z (t))]-’ $ [O (i; I(s), T - s) + ais] I, = ‘3.f;;=;;40 

Similarly, 

I%” (0 = 1’:;;; , 8J'(t) = -0.20t+7.60 
15t+30 

Note that the vector B"(1)=(Bla(t),B,'(f),830(t)) satisfies conditions (2.2) and (2.31, i.e., 
for each t~IO.11 its components are weights. 

By Theorem 5 the vector function B" (.) is a solution of problem DS for the distribution 
6". Indeed, we can verify that 

E' = 1: B"(T) hN(Z(Q)dT = (-6.6OF - ~/KU+ 10, 

-P- 19t-20,0.iOt*-77,60f+7.50)=(u (i;i(t),l-t)+ai’,i= 1,2,3) 
(8.7) 

and so 

S: B” (7) h, P (7)) dT E ED (z(t), 1 - t), 0 < t < i 

Using v(.) we can compute the dynamically stable payoffs earned by the players in any 
time interval ]O,t] given the distribution E". For instance, in 10, V,] these payoffs are 

'I1 

S, 
B"(T)~~(z(T)) dr = (3.35, 9,75, 3.77) 

The vector of the remaining payoffs in the time interval IV,, i], i.e., (6.65, 10.25, 
3.73), belongs to the set E,(z(V~),Vp), i.e., it is optimal in the same sense as the distribu- 
tion 5". 

Let us solve problem DS for the distribution FE C,(rO,~- to). Let us investigate the 
behaviour of the ratio ys (t) = aL (S) [al (N)]-1 (see Theorem 6) for increasing f E [U, 11. For S: 
1 S 1 = t,ys(t)zO for all TV (O,i], and for s = ~,ys(qcl for all t~[O,i]. Let ]S]=2. We have 

ar (N) = 10.24 (t - i)% at ((1.2)) = 4.36 (t - i)*, 

at ((1.3)) = 3.20 (f - 4)*, a1 ({2.3)) = 3.03 (t - 1)' 

We see that the ratio Ys (1) for each coalition is constant along the optimal trajectory. 
By Theorem 6, the solution of problem DS for E" = C" (+o, T - to) is its initial af. 

We will show this for the distribution (8.6) (it can be checked that this distribution 
belongs to the C-core C,(zO, T-to)). We have to show that for any t~[O,i] the vector (8.7) 
belongs to the current C-core. By Theorem 7, it suffices to check condition (4.2) for the 
barycentric coordinates of the distribution E". It can be shown that these conditions indeed 
hold. Therefore, the af B" (.) is indeed optimal for P. 

Consider the Shapley vector. Since the functions @i"(Z (t), T - I), i = i, 2, 3 are differen- 
tiable with respect to t, the functions (7.1) exist, and therefore the vector Q" (% T - 10) 
is dynamically stable (see (7.2)). The trajectory f (*) is thus an optimal trajectory for 
the Shapley vector. 

The current Shapley vector has the form 

Q" (f (0, T - t) = (@i” (f (t), T - t), i = 1, 2, 3) = (-4.061' - 
8.48t + 12.54, -3.54C - 13.92t + 17.46, O.lOP - 7.60t + 7.50) 



By formula (7-l), we obtain the optimal af p(a) for the Shapley vector d'U (Jo, T - to): 

8.121+ 8-48 7.0st+ 13.92 -0.201+ 7.60 
15r+30 ’ m+30 ’ 151+30 

O<t<i 
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A DIFFERENTIAL GAME WITH A FUZZY TARGET SET 
AND FUZZY STARTING POSITIONS* 

V.A. BAIDOSOV 

A mathematical model of a situation in which it is required to develop a 
single control strategy for a fuzzy set of objects in the presence of 
noise is considered. The control objective is to hit a fuzzy target set 
at a given instant of time or to evade the target set. The problem 
reduces to constructing a universal optimal strategy for a differential 
game whose payoff function is the membership function of the target set. 

1. Consider the differential game 

x' = f (t, x, u, u) (1.1) 
x E R", u, (1) E I-', u (t) E Q 

where P and Q are compacta in R" and fig. We assume that the right-hand side of (1.1) satisfies 
the canonical conditions /l, p.37, 38/ and that the small-game saddle-point condition holds 

il, p.79/. The game is considered in the time interval T L it*, 81. 
Let u: T X R" -cl" be some position& strategy of the first player. We denote by K, [t,, 

tl(x,) the set of constructive motions /2, p.33/ x(.) generated by the strategy u in the 
time interval [t,, tl and satisfying the initial condition x (to) = X@. Let the set X be the 
set of all non-empty subsets of the space X. We define the set-valued mapping 

K, (t, t,): R” + set R", t > &J 

setting 

Ku (tv to) xo L!= 0 (t) : x (- ) E K, [to, t J (x0)) 

We similarly define the set-valued mappings K,(t,t& for the second-player strategy u. 

Let F(X) be the family of fuzzy sets in the space X, pa the membership function of a 
fuzzy set. The value of p~ at the point x will be denoted by (II.41 x>. 

If some mapping 

n: Rn +F(R") (1.Z) 
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