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SOLUTION OF THE PROBLEM OF DYNAMIC STABILITY IN A
COOPERATIVE DIFFERENTIAL GAME WITH SIDE PAYMENTS'

N.N. DANILOV

A general sufficient condition for a dynamically stable /1-3/ solution of
a cooperative differential game with side payments to exist is derived,
and the dynamic properties of the set of distributions and the C-core are
investigated. The problem of dynamic stability of a distribution from
the solution of a game is formulated. The solution of this problem is

an allocation function (af) satisfying the condition of dynamic stability
of the distribution (the optimal af). The notion of an initial allocation
function is introduced. A method of computing the optimal initial af is
developed. The method is applied to a three-person game with integral
transferable payoffs, when the solution of the game is defined as the set
of distributions, the C-core, and the Shapley vector.

1. Statement of the problem. Consider an n-person differential game [ (zq, T — ;)
of prescribed duration T — i,

r=f{@Uy..nU), 2= R", (i =1z, {1.1)

T
Tyt - yu) = §, i@ (@) dt + Hy (2(T) (12

Here and henceforth, unless otherwise specified, i=1,...,mt& [, FL

An admissible control of the player I is any function u; Lebesgue measurable in [tg, T}
which, for every ¢, satisfies the condition u,(f)es U; (U; T R™ is a compactum).

Regarding system (1.1) we assume that for any initial values gz, R™ and any combination
(¢, . . ., u;) of admissible controls it has a unique solution x(-) continuable in [i,, T1.
In order to simplify references to system (1.1), we will denote it by X (z,).

Let N ={1,...,n} be the set of players. We assume that the rules of the game allow
the formation of coalitions S C N and that the payoffs are transferable between players /2/.

The characteristic function (cf) is the mapping @ 2¥ X R™ x R*— R' (R} is the non-
negative real half-line) which associates with each coalition S < 2¥ and each initial pos-
ition (Zg T — ) = B™ X R, a real number v{S;zy T —1g equal to the payoff secured by
the coalition § in the game I {z4, T — 14 {irrespective of the actions of the players from
the set NN\ S).

We assume that v ({; &g, T — L) = 0 and

v(V;xo, T —tp) = sup Y Nfi(xn,u,,u-,un)
i

Ugpenrtiy

{here sup is over the direct products of the sets of admissible controls of all players).
v{(N; 2o, T — tp) is the maximum payoff of the coalition N in the game T (zo, T — ).

The vector & = (§° ..., &°), satisfying the conditions E° 2w (i x5 T — 1) (individual
rationality), E°(N) = v (N:izo, T — 24) (collective rationality) is called a distribution
(here and henceforth, E°(§) = Sicst, §C N).

We know /4/ that the vector E° e R® is a distribution if and only if

E° = v{l; 2os T — tg) + 2 (1.3)
a’>0; °(N)=v(N;zp T —t) — );‘,ieN U (i gy T = t4) (1.4)

The vector &° = (&, ++. &,") satisfying the conditions (1.4} will be called a side
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payment vector.
The triple Ty (zey T — 2p) == {2 (2y), N, V> will be called a cooperative differential game
with side payments. The game I, (2o, T — f,) in which the cf is superadditive in S, i.e.,

v(S; 29y T —tg) T v (Rizg, T — 1) <v(RU 8520, T — 1)
SsSRCN: SN R=( (1.5)

is called essential, We will consider only essential games.

2. Dynamically stable principles of optimality. 1et E,(z,, T — ) denote the
set of all distributions in the game T, (x4, 7 — o). For a superadditive cf a® (N) >0, and
we thus have FE,(z,, T — t,) %= .

Let W, T, (zoy I — tp) > W, (20, T — ty) be the mapping associating with each game Ty (zos
T —1ty) a subset * W, (zg, T — to) T E, (%o, T — 1g), which is called optimal. The mapping W,
will be called a principle of optimality, and the set W, (z,, T — t;) will be called a solution
of the game T, (zgy T — t,).

Let xz(+) be some trajectory of the system I (z,). Embed the game T, (zq, T —1¢) in a
family (by parameter t) of similar games {I', (z (t), T — 1), t, <<t < T}, where T,(z(#), T —1t) =
{Z (z (1), N,v>. By definition, W,z (®), T — ) C E, (z(@®), T — 1).

Any trajectory Z(-) of the system X (x,) such that

EieN TiE()=v(N;zp, T — Ly)
will be called conditionally optimal. Here

1@ () =, ke @)ar+ H Ty

Definition. Let W, (x,, T —1,) = (). The distribution & & W, (zo, T — to) is called
dynamically stable if there exists an n-vector function §(-) integrable in [, Tl such that

t
ve N [gt B () hy (£ (¥) dt + W, (z (), T — 1)] @2.1)
AN@E@) =R E@) 4 - + R (T ()
o)+ ...+ B (1) =1 (2.2)
The solution Wy(zy, T —t,) is called dynamically stable if all the distributions e

Wy (29, T — t,) are dynamically stable. In this case, the trajectory 7#(-) is called optimal.
The condition (2.2) guarantees the equality

Sn LB @hy @@ dr = § hy @)

If together with (2.2) we have
i) >0 (2.3)

then B; () in (2.1) are weights. 1In this case, the fraction of each player in the "total
payoff" hy (2 (t)) is non-negative for all t.

Theorem 1. Let hy (Z(f)) %£0. For the solution W, (z,, T — t4) of the game Ty, (zg, T — to)
to be dynamically stable it is sufficient that the following conditions are satisfied along
the conditionally optimal trajectory Z(:):

1) Welz @), T —1)+#*

2) for each distribution & & W, (x4, ' — ty) there exists a function &' differentiable
with respect to t such that

e W @0, T —1) and &= F

Proof. Let B < Wy(z,, T —1t,), and let ¥ & W, (z (f); T —t) be the distribution function
differentiable with respect to t such that Eb = §°, Construct the vector function

B(t) = — [hy (EO)]™ = &) s 2.4

The function (2.4) is integrable in [t5 7] and satisfies the conditions (2.1) and (2.2).
Indeed,
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3 B0 ==l @) g Wz T — 9k =

— o [§ e+ Y Bean]| =1

t

§ By () dr+ B @) = §, dis+ B (2(T) = € (2.5)

The condition (2.1) is a direct conseguence of the equality (2.5). Since the distribution
e W, (z,, T —1) is arbitrary, the solution Wy (e, T — ;) is dynamically stable.

Note that if the vector function PB(-) <can be chosen to be continuous in [t T1, then
the conditions of Theorem 1 are also necessary.

Corollary. In addition to the conditions of Theorem 1 let Ay (Z (1) >0 and let the func-
tion E' in condition 2be monotone non-increasing. Then for each distribution B < W, (z, T —
ty) there exists a vector function f{-) which satisfies the conditions (2.1)-{2.3).

In some cases, the solution W, (z,, T —~t,) 1is a convex, closed, polyhedral set (see
below, Sects.3 and 4).

Theorem 2. For dynamic stability of the solution W, (x4, T — 1y} which is a closed,
convex, polyhedral set, it is necessary and sufficient that its extreme distributions are
dynamically stable.

Proof. The necessity is obvious. Let us prove the sufficiency. Assume that W, {z, I —
) has ! extreme points &, ...E. For any distribution §°= W, (z, T —t,) there exists
a single-value representation §° = A% 4, .. + A4, where A, >0, k=1,...,0L M +...+
A, == 1. By the dynamic stability of the extreme points, we obtain

i !
p=3  mer = :, [Z, M5 (] v (2 (1)) e+ Z,;l Akt (2.6)
YW, (26, T —8, k=1...,1

Let
Bit) = Do, MBI B = Dy MHE

The vector &' belongs to the set W, (z(t), T — t) because the latter is convex, and §, (t) +
veu Ba(t) =1. Thus, from (2.6) we obtain that the distribution §° is dynamically stable.

3. The set of distributions. 1In this section, the solution W, {z4, T — fs) of the
game T, {zo, I' — fp) 1is the entire set of distributions E, (z, T — i)

Lemma 1. The set of distributions E,(z,, T —1y) is a_convex, compact subset of the
space R® with n extreme points of the form §.¥ = Gr*, . oY Ek=1,...,n where

%X
8 =

{v(k;xm T—t)+ o), i=k

v (i 2o T — 1) ie NN\ {k) (3.1)

Proof. We use the shorthand notation FEp= Eo{2e, T — ), v($: 20, T — t;) = v (S). The set E, is
convex and compact in R"™ as the intersection of the hyperplane § ()= »N} with the convex
polyhedral domain @: &° > v(i). The domain @, being the intersection of n half-spaces in R™,
has n(n — 1) ~dimensional faces, and the point n=(v(),...,v(r) belongs to each of these
faces. The set E, is not identical with any of the (r-— 1)-dimensional faces of Q, because
otherwise the vector n would be a distribution, which is impossible in an essential game.

We will show that all vectors of the form &% are extreme points of the set E,- Clearly,
each vector &%¥ k=1,...,n, is a distribution (see (1.3)-(1.4)). Assume that the vector ghE
is not an extreme point of the set FE,. Then there should exist two different distributions
f, o= E, with components E° = v(i)+ a, fe=v@+ar,t=1,...,n where a°#a° for at least
one ie N and which satisfy the equality AP+ —n P =£"%0<r<4. Hence for the k-the com-
ponents of the distributions F,8,§¥ we should have the equality

M+ —nE=uF 0<a<t (3.2)
If ° = a°, then from (3.2) we obtain ai® = v(N) — Nienv () = &°. This means that o =
a°=0 for all IeN\{ and so F=F=¢t"% We should therefore have ax°# o, and
thus
ako, ;ko < v (N) - Ei‘EN v (") (3-3)
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From (3.2) we have
Brofe P Dy -E

A=-¢ = = =
Eko . Eko ako _ ako

if %°> o, then using (3.3) we obtain that the last fraction is greater than 1, which
contradicts the condition A< 1; if &°< a°. then the last fraction is negative (because its
numerator is positive), which contradicts the condition A>0. Thus, the assumption is false,
and each of the n vectors t"¥ k=1,...,n with the components (3.l) is an extreme point of
the set E,.

We will now show that apart from the points &t ¥k=1,...,n there are no other extreme
points in £,. To this end it suffices to show that any distribution of the form & = {v(i) -+ a,
i=1,...,n},where a°<o°(N) for all i=1,...,n and @°>0 for at least two indices i, is
not an extreme point of the set E,. Consider n distributions t™* k=1,...,n whose components
are defined by the equalities (3.1) and the vector A with the components A; = a;%a’ (N). In an
essential game a°(N)>0. We can verify that

n o n
§°=2'x=1’“k5'k' Ek=1"k=" 0<he <, k—1,uyn

and for each k such that o;°>0 we have Ax>0. Thus, the distribution t° is not an extreme
point of the set E,. In order to complete the proof, it remains to note that among the vectors
Pk k=1,...,n, which are extreme points of the set E, no two vectors are equal (otherwise
the game would be inessential, see (3.1l)). Thus, E, has precisely n extreme points.

As follows from Lemma 1, any distribution t° e E,(x,, T — 1) is uniquely representable
in the form

n o «
E=E0)= M (3-4)
where A° = (,,° ..., A;°) 1is a vector from the n-dimensional standard simplex

A={AE B |M>0k=1...,m S M =1}.

In (3.4), the numbers A°, ..., Ay° are the barycentric coordinates of the vector E° in
the set E, (z,, T —t;). We can show that for each A & A the vector (3.4) is a distribution.
Conversely, for each distribution ¥ & E, (zy, T — f,) there exists a vector A°e& A, which
satisfies the condition (3.4). Hence we obtain the representation

Ey(ze, T — 1) = {8 (M) & R" | A= A} (3.5)

Consider the set-valued mapping (z, T —t)—> E,(z, T —t) which with each initial position
(r, T —t) associates a convex compact set of distributions in the game T, (z, T — ¢).

Let z(-) be a conditionally optimal trajectory in the game Ty (z9, T — £,)e Define
the set X (@I () ={@= T —t)lza==2(), t, <t T} Let px be the Hausdorff metric induced by
the metric

P(gtv w) = glgi‘_nil b YN eEE, (x,T —1)

Lemma 2. Let the cf v be continuous on the set X (#(-)). Then the mapping (z, T — ) —
E,(z, T —1t) is continuous by inclusion (in the metric pyx) on the set X (z (-))\

Proof. Continuity of v implies continuity of the extreme distribution functions ghk

’

§x.k={v(k; 2, T —)+at(V), i=k
i v(i; 2()), T — 1), e N\ {k}

Therefore, any distribution function ¥ =@M =LA (@, T—1¢ is continuous on X (z (-).
This_ means that for each fixed ieA and any e>0 there exists §, =6(, 4 >0, such that
NEM@E@E), T—)—E@) (@@, — "Mi<e, whenever (z()—z()|<b, [ —| <&, t',t" = [ty, TI.
Fix some distribution ! =t"@A)e E, (z(t"), T —¢) and take the bound

. inf P (R B = inf p Y (), £ (N <
eE, =@ T—1) nEA
pET(R)LE BN <e

(here we have used the representation (3.5)). Hence

sup . inf P&t = sup inf pE" (A B (W) <e
teE, (), T—t) ek, @@, T-17) rEApsA
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whenever

1z () —Z ()1 <8, | — | <0, t',1" & [ty, Tl, §=min {8 (g, 1), (3.6)
A e A}

Similarly we obtain the bound

sup , inf P, ) <e
YelE, & @), T—17) $'eE, (% () T—t)

Thus, px (Ey(z(t), T — ), Ex{z (), T — ")) < e whenever (3.6) hold.
Let  Hy(z(T) =iy Hi(z (1))

Lemma 3. Let hy(Z(4)+#0 and let the function v (i;Z(¢), T — 1) be continucusly dif-
ferentiable with respect to t. Then every distribution §° = (§,° ..., §°) = E, (Toy T — 1)
is representable in the form

T
g ={, Bihy (30) dt + H, (7 (T)) (3-7)
where B ()= By (-)sy ..., Ba(*)) is a vector function integrable in [t T] that satisfies the
condition
Ziey ﬁi (t) =1 (38)
) Proof. There exists a vector A°= (A’ ... 4°) € A, such that g =§@R)=3", ot ", where
e F k=1,...,n, are extreme points of the set Ey(zyy T — ). In the interval [¢%. 7] construct
the vector function B()=(B(:),. .., Bn(-)),
= |~ o d se =
B0 =+ ey GO (b [ 3 vz 1 —a ]| - (3.9)

d
2 [0 36, T =911

The function (3.9) are integrable in {¢, Il. We will show that the vector function §(-)
satisfies the condition (3.7). The integral on the right-hand side of (3.7) is

A S,T hy () dt + S,T [ Xzt o] |a-

T g
S Sl 2, T — )], dt
y, ds

Using the definition of a conditionally optimal trajectory, the continuity of the
integrands in the second and the third integrals, and finally the additivity of the function
v(S;z(T),0) in S, we obtain that the right-hand side of the equality (3.7) can be written in
the form

Ao (N o, T —to) — Hy (Z(THF—A° Zi;Nv (65 x0, T — 1) +
v (i; 2o, T —to) + Ai’E‘/eNU(]’; Z(T), 0) — v (i; 2(T), O) + H, (F(T)) =
v {is 0, T —to) +A° [u Ny 2o, T—t) =), v(iszo 7 ~to)]

It follows from (3.1) and (3.4) that the right-hand side of the last equality is equal
to &°. Therefore, equality (3.7) holds for the vector (3.9). We can verify that the equality
(3.8) also holds for the vector (3.9).

The vector function B8 () satisfying the conditions (3.7)-(3.8) will be called an
allocation function (af) for the distribution Eg°

We can show that "sufficiently many" afs exist for each distribution.

Theorem 3. Let hy (Z(f))% 0 and let the cf v be continuous on the set X (z(-)) and
continuously differentiable with respect to t. Then the set of distributions E,(xg, T — tg)
is dynamically stable.

Proof. 1In an essential game, E,(r(t), T — 1)+ (. The conditions of the theorem enable
us to apply Lemmas 2 and 3. Therefore for each '8 <= E, (z,, T — t,) @ continuous distribution
function &' —=E,(z (), T — 1), E» = E°exists. This function is differentiable. Thus, the
conditions of Theorem 1 are satisfied if we take W, (Z (), T — ) C E,(z (), T —1t).

4, C-core. 1In this section, the set W, (zy, T — f,) is the C-core C,(ze, T — o) of
the game T, (ry, T — %0). Recall that E & C, (xy, T — t;) if and only if
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ES)=v(S;20, T —1ty), STN (4.1)

Let

' (S)=v(S; 2t T —t)— D _ (2T —18), SCN

=]

Lemma 4. For the C-core Cu(Z(#), T —1t) of the game I',(z (1), T — ) to be non-empty, it

is necessary and sufficient that vectors A e A, exist such that
3. x.>{0’ |51=1 (4.2)
s M Lol (S) [ (M), [S]>1
(for |8 |=n, (4.2) reduces to an equality).
Proof. Necessity. Let Cp(@ (), T— 1)+ @. By (4.1), for each VsC,(z @, T—1,
S zo(S 2@, T—1), SCN (4.3)
The components of the distribution {! can be represented in the form
B=rv 20, T — 0+ ko (V) (4.4)
Substituting (4.4) into (4.3), we obtain (4.2).
Sufficiency. Consider the vector & = (&, ..., &}, whose components are given by (4.4),

where »; satisfy condition (4.2). We have

oz, I—t; BEW) =020, T—1
@) >v(Sz2W0,T—0, SCN

Therefore the vector ¢ is a distribution in the game T, (Z(n, T — ¢ and belongs to its
C-core Co (@), T — 8.

Assume that C, (Z(t), T —t) 5= ¢ and consider the set-valued mapping (z, T — t)y—> C, (a,
T—1) which associates with each initial position (z, I —#f)= X (Z(-)) a non-empty C-core
C,{xz, T —1) (is closed, convex set) of the game I, (z, T — %).

Lemma 5. Let C,(z(t), T — 1)+ (J, and let the cf v be continuous on the set X (Z (+)).
Then the mapping (z, I — t) > Cp (z, T — t) 1is continuous by inclusion (in the Hausdorff metric)
on the set X (z (-)).

Proof. We have to show that for any £>0 there is §( >0 such that

Px (C,(Z(@), T—1),C (1), T—1) <t (4.5)
whenever
z@)—2@[|<8(e), (¢ —t|<8(), ttely, T] (4.6)
The inequality (4.5) holds if and only if for any e>0 there is §() >0 such that
1) for each ¥ e (¢, (W, T — 5 there is ' e ¢, @), T —t), such that o (&, t") e,

2) for each ¥ e(C,(@@), T —t) there is i e C,(Z(), T — 8, such that p (", ) <e, whenever
(4.6) holds.

Let us prove 1l). Since the set E,(Z(). I —1t) 1is continuous by inclusion (Lemma 2) for
every Ve (y,(2(t),T— 1 and any &>0 there exists a distribution &' =g,z (), 7~ ¢), such
that

pELE) <e @7

whenever (4.6) holds. Assume that for all &' satisfying (4.7) we have t¥ & C, (Z(¢), T — ). This
means that .

O, EYNC,2(t), T—tY=0g (4.8}
where Op (8 = {n|p (§,,m) <e} is an e-neighbourhood of the distribution &. Let v be the
orthogonal projection of the distribution & on the set C,(Z(t'), T — ¢},

pE, 1)Y= min p(E, &)
gfec, @@ T—t)

By the compactness and convexity of the set (¢, (), 7 —1t), the point n". exists, is

unique, and lies on its boundary. Hence there follows the existence of a coalition S*CN
such that /' (§* = ¢ (S*: 2 (), T — 1. From (4.8) it follows that p (&, ') >e, whence we obtain
the bound

EL(SY <t (8% — &, 0< e <<|S*| Ms (M — const > 0) (4.9)

By the continuity of the function v (§* 2(:),7—1¢ in the interval [t4, T], we can choose
e>0 so that
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fe (20, T—t—v(SH2z@), T—t) <8
From the last inequality and the relationship (4.9) we obtain E (§*)<v(S*;Z(), T —1t). We
have a contradiction: sincet!e ¢, (z(t), T —t), we should have E (S)>v(S;Z2(), T —1), S N. There-
fore, assumption (4.8) is false and we have proved proposition 1). Proposition 2) is proved
similarly.
The following theorem is a corollary of Lemmas 3 and 4 and Theorem 1.

Theorem 4. Let hn(Z(f)) # 0 and let the ¢f v be continuous on the set X (£(-)) and
continuously differentiable with respect to t. Then for the dynamic stability of the C-core
it is sufficient that condition (4.2) holds.

5. The problem of dynamic stability. Let & & E, (xy, T — fo)- Define the set (see
Lemma 3)

T
BE) =B () =(B()--- BN =§, O ®)at +
HED);Bit) + - -+ Bat) = 1)

where f(-) is the af for the distribution E°. Informally, B (§°) is the set of all afs for
the distribution E° along the conditionally optimal trajectory 2z ().

The final outcome of the game is always a single distribution. Assume that the players
have agreed to implement the distribution Et° < W, (2, T —fp). Since this distribution is
realizable only if it is dynamically stable, the players have to solve the following problem
of the dynamic stability of the distribution §° (problem DS).

Problem DS. Find a dynamically stable realization of the distribution E & W, (z,, T — to)
in the time interval [, T1 along the optimal trajectory =z (-). In other words, from the
set B (£°) select a vector function f(-) such that

[§ B hn @ () de + B @@ =Wo@ 0.7 — 1 (5.1)

The solution E() = B (£°) of this problem is called the optimal af for the distribution
3

The solution of problem DS exists only if the distribution E° & W, (xq T —t,) is dynamic
ally stable.

6. Initial af. As follows from formulas (3.1) and (3.4), for each distribution §° =

(&° ..., &°) there exists a unique vector A°&= A such that
E° = v (i; xo, T — ty) + A% (N) 6.1)
From (6.1) we obtain expressions for the barycentric coordinates A% ..., A,° of the
distribution &° on the set E, (24, T — o)
A = [0 (V] L@ — 0(5; 20y T — 1)) (6.2)
Construct the functions
;' = A% (V) (6.3)
Clearly,
H=@@iw), T —t)+tafi=1...,R}=E, &), T—1 (6.4)

Assume that the cf v is differentiable with respect to t on [, 7] and construct the
vector function f°(-) = (B;°(-)s .-« Ba (:))s

B (t) = — [ (B O o [0 (532 (9), T — 5) + /"] s (6.5)

Applying (6.3) and (6.4) we can verify that f°(-)& B (£, i.e., B°(-) 1is an af for
the distribution E°. Noting that the vector function §$°(-) is computed from the barycentric
coordinates A% ..., A,° of the distribution }° (see (6.5), (6.3) and (6.2)) in the initial
set of distributions E, (zy, T — f4), the af f°(-) will be called the initial af for the
distribution §°

Let us investigate the question of the optimality of the initial af for the set of dis-
tributions, the C-core, and also the Shapley vector.

First we use the entire set of distributions as the solution of the game Ty, (zg, T — t,)-.

Theorem 5. For any dynamically stable distribution &° & E, (zoq T — fo)sm its initial af
is the optimal af (the solution of problem DS).

Proof. Consider an arbitrary distribution &’ & E, (x4, T — t). Let B¢y =(BC) .oy
B.°(-)) Dbe the initial af of this distribution. Integrating the equality (6.5) on [, T] and
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using the relationship T =0, v(i; 2(T), 0) = H, (£ (T)), we obtain

L2 B @by @) dT + Hy (5 (1) =030, T — 1) + o/ (6.6)

Let A° ...,A,° be the barycentric coordinates of the distribution }° in the set E, (z,,
T — ty). Substitute in the last equality the value of «;' from (6.3). Since ... A0
A, the vector I with the components Ef = p(i; (1), T — £} + A ' (¥) is a distribution in
the current game T, (2 (), T — ). Thus, from (6.6) it follows that I & FE, (@, T — b =W,
o 1)
¥ n
Now take the C-core as the solution of the game Ty(z,, T — 1)

Theorem 6. For the initial af B°(-) of the dynamically stable distribution §° from
the C-core C(,{x,, T — #,) to be optimal (a solution of prcblem DS) it is sufficient that for
each coalition S N  the ratio af(S)[a! (N)]I! is monotone non-increasing with time along
the trajectory z(-).

pProof. Let A, ..., A, Dbe the barycentric coordinates of the distribution =0, (2,
T — ty). By Lemma 4,

E‘ies A (S [ ()], SCTN

since o (8) [ (W)}, is monotone non-increasing, we obtain

S GZE T — )+ ARV >v(S;20), T —1t), SCN
s

Therefore, at the instant t there exists a distribution
g' = (E:l'v MR ] gnx): §il == Y (i; .’E(t), T - t) + }"ioa‘ (N} (8‘7)

that belongs to the C-core Co,(Z(t), T —1) of the game I, (z(f), T — ). Differentiate equality
(6.7) and divide both sides of the resulting relationship by hy (z (#)) = 0. Using (6.3) and
(6.5), we can write

[ (2 ) % &) | = — B ()

Hence we have &,/ =1I; (I, is defined by equality (6.6)). Thus, f = {l;, ... ))& C, {7},
T — .

Theorem 7. For optimality of the initial af f°(:) of the dynamically stable dis-
tribution §°€= C,{zy, I — t,) it is sufficient that the barycentric coordinates of the  dis-
tribution § in E,(z,, T — f;) satisfy the condition

Sesh® = (S [ (N, SCN

In other words, for optimality of $°(-) for the distribution E°€= C, (z,, T — &) it
is sufficient that at each instant of time t there exists a distribution Y &, (z(), T — 1),
whose barycentric coordinates in K, (f (), T — #) coincide with the barycentric coordinates of
the distribution & in E, (zee T — o).

Theorem 7 is proved in the same way as Theorem 6. It provides a relatively simple
criterion for checking the optimality of the af for the distribution E° from the C-~core: it
suffices to check the conditions (4.2) for the barycentric coordinates of E°

We now give an algorithm that solves the problem DS for the case when its solution is
the initial af:

1) compute the barycentric coordinates of the distribution & W, (2, T — to) in the
set E,(zy, T — t,) (using formula (6.2));

2) find the form of the side payment functions o/, i=1,...,n, defined in I{e Tl and
corresponding to the distribution §° (using formula (6.3));

3) find the initial af f°(-) for the distribution }° (using formula (6.5)).

7. Shapley vector. Let W,(z,, T — 15) be the Shapley vector @°{(z, T — to). In the
current game [, {z(f), T — ) its components are calculated from the formula

(Di"(Z(t),T——t)=Z (n—|SP(gS|—N! X

SN HeS nl

Sz, T — 8 —v S\ L2, T —1)]



42

Construct the vector function B () = (B (-)s ..« Pu ()
Bi(t) = — ln (& ()] = (D2 (), T — 9)] (7.1)

Theorem 8. Let the vector function ®%(z (¢), T —t) be differentiable with respect to t.
Then there exists a unique optimal af (the solution of problem DS) for the Shapley vector
D° (2, T — to) whose components have the form (7.1).

Proof. 1In each current game, the Shapley vector exists and is unique. Therefore its
dynamic stability implies that

t
O (@ T — 1)) = § B hy (2 (D) dx + @ (2 (6), T — 1) (7.2)
Using the equalities

Dien @@ T —t)=v(N;2(t), T —1), ®°(Z(T),0)= H(2(T))

we obtain for the functions (7.1)

ZiEN ﬁi (t) =
a pT
— Ui e @1 e [ § B @ o) e+ Hy (D] = 1
§, B @@)det 1,2 (1) =

—§ 0P @O, T — )+ Hi (@ (1) = OF (2, T — 1)

Therefore, the vector function f(.) with the components (7.1) is an af for D (z,,
T — ty). The vector function B (:) is a solution of problem DS for ®°(x, T — t,), because
it reduces equality (7.2) to an identity. The unigueness of the optimal af follows from the
uniqueness of the Shapley vector in each current game.

8. Solution of problem DS for one three-person game. Consider the three-person
differential game described by the equation

2 =u; + U+ ug x(t) =0, tp =0 8.1)
z = (¥, 2@y, ;= (@O, u;®): |u I <1, i =1,2,3

The payoff functions have the form (a;, b;, ¢; are non-negative constants)

T
T i (g Uy, Uy, g) = Sz (@ @M (t) + ba® (t) + ;) dt (8.2)

(E'ies aii)z + (E‘ies bi)z#: 07 SCN (1\’7 = (1, 2, 3))

Admissible controls are the functions u; Lebesgue measurable in [#,, 7] such that at
each instant t& [fy, T1 Jlu, (I << 1.

Let us construct the c¢f v. To this end, for each coalition S (_ N consider the zero-
sum game Ig" (o, T — t,) between the coalitions S and N \'S, which is defined as follows.
The game dynamics is (8.1). We use piecewise-programmed strategies (PPS) /2/ as the admissible
strategies ¢g and @n\s of the players § and N N\ 'S in the game T's¥. The set of PPS
of the player S (N \'S) is denoted by Dg(Dx.s). The payoff of the player S (the maximizing
player) in each situation (¢s, ¢n\s) is defined as —8 (z(7), y), where z(T) is the final
point of the trajectory =z (:) =z (-; Zo ¥s, Pxg) ©of the system (8.1), ye= R* and 6 is the
Euclidean metric. Since the right-hand side of Eq. (8.1) is “separable" in the controls and
the integrands in (8.2) are continuous in R?, then for each & >0 there exists and &-
saddle point (gsf, ¢w~s) and the value

val [g? (g, T — to) = lim J (24, @58 GN~s)
E—0
(T (2o, sty Pns) = —0 (z (T Zo, 9%, Pns)s )

For each coalition SCN define the set
Y5 (zo) = {y & R* | val Ts¥ (2o, T — to) = U}



43

Let
rslte) = (IS — NN ST — 1), B (2 rs (o)) =

{r= R L ziff < rs® (4o}

Lemnma 6. Let rg(t) >0. For each PPS ¢y.s < Dy.s and each point ¥ = R {zq, rs (L)
there exists a PPS ¢g <= Dg, attaining the point y (a point y is attained in the situation
(s, ov~s) L1f z (T Zo, ¥s0 P~g) = V)

Proof. Assume that the player NN\ § chooses the PPS ¢y g = (Ay. g oy g) Construct the

A A i A A
PPS g ={Ag g}, where Ag={fh=f"< ... < t;f =T} ag=(ag’ ..., 88 ) aghi{s S altx N —ug Jugl<
8L k=10,..., 1, in the following way: Ag= Ay.g and
agh (5) = —al g0+, VzE RS, k=0,...1 8.3)
Y— 2

o = sy Rz rg(h))

Since
1 1
fol—7 v — n)< 57 st =S [—1¥\S]
then
bag @ =llahns @I+I0I<INNS|+ISi—|N\S|=]5]|
and the relationship (8.3) is thus well-defined.

For the pair of PPS (9g. P g}, we obtain from (8.1) 2 =@, O

i T
z(T)= z““"T——“t_oX, (y'—zo} dt =y

Corollary. Let rg(t) >0. Then
Yt (@) = (z= B |l 2P < rs? (W) = O (8.4)
Proof. By Lemma 6,

in! sup 6(z(T; 0. Pus sy =0, Vy e R (xy, re (£
s Tl (2 (T3 zo, Pgr Py g0 ¥) ¥ {ro. rg (o))

Since the right-hand sides of (8.1) are separable in controls, we may interchange inf
and sup, sc that
val Tg¥ (24, T — 1) = 0, ¥y = R (z,, rg (&)
val I‘S” (IO’ T— tg > 0, VyeR {xg, Fg {te))

Therefore (8,4) holds.

Since the inequality rg(t) <<0 is equivalent to the inequality ry.\g(t,) >0, then (8.4)
remains valid when S is replaced by NN\§ and rs(ty) by rxs (to)-

Now define the cf

max X, _ 7 [ S| >N\ 5]
2(Sizy T —ty)= 1 min X, _o Jo [ S|V 5] (8.5}
0, S =

where J; is the payoff function (8.2), the operations max and min are over YI*(z,) and
Yls (o) » respectively.
For each coalition S (N, let

1 2 i {m)
uS'——(u(S)’uf?))v ug )=E{Esui + m=1,2

s = z‘ies a; by == Zi-ES biv Cg == Eies C;
Compute the conditionally optimal trajectory Z(.) = x{+; Zo dn):
ZieN I i{zy, lin) = n:ix ZieN Jilzg un)
£y

Using Pontryagin's maximum principle, we obtain



44

3a 3b
ﬁg’) — N , & 2) = e N
Vak+ o} Vi, + 0%
Hence
20(t) = <t —to) -+ 25"

VaN

3b
Jeitd] (t) =S -"!—/-—-._:J_v—_.’— (f — tu) - x&”

Y

For the maximum coalition N we have

v{V;z(t), T—1t) = %’VM(T’——%*) +
[(am.r") + bhxm +en)—3 ]/afv 4 B (T —1)

Similarly we find

a &
=, A =, SCN:|S|=2
Vag®+bg? V“sz‘f'bsa
a, L}
R o Rl et o e o
l/ai +-&; }/“5 +

HSEOT — )= ViF FEST — 10+ 3 _ @200+
bED 1)+ ) (T — W SCN: [S]=2 vBz@)T—1) =
- VaE F B3 (T — 1) + (@D (1) -+ b () + e} (T — 1)

LTemma 7. ‘The ¢f v defined by Eq.{8.5) is superadditive in S.

The lemma is proved by substituting the values of the c¢f » into (1.5},

Thus, on the basis of the game {B.1), (8.2} we have defined an essential cooperatiwve
game T, (ty, T — f,) 1in the form of the ¢f {8.5}.

since the conditions of Theorem 3 are satisfied, the set of distributions E, (x4 T - t,)
in this game is dynamically stable.

For a three-person game, the condition (4.2) for the C-core C, (£ (), T —1) to exist is
equivalent to the inequality

Do 15V ST —O<S WV T — 1)

This condition is obviously true in our case, and so C, (z (), T — t) 5= ). All the con-
ditions of Theorem 4 are satisfied, and therefore the C-core C, (%4, I — 1) in this game exists
and is dynamically stable.

Thus, if the solution W, ({x, T — f;} of the game I, (2 T — ;) is defined as the entire
set of distributions or the C-core, the conditionally optimal trajectory £({.} 1is optimal.

Applying the algorithm of Sect.6, we will solve problem DS for the set of distributions,
the C-core, and the Shapley vector.

In (8.2) let T =1 a,=1,8,=2, ag==0; by =2, by=bg=1; ¢, = 10, ¢ = 15, ¢ = 5. For these
numerical values, we calculate (to two decimal places)

& (V) = 3750, °(4) = 8.88, +° (2) = 13.88, »° (3) = 4.50
©{I.2]) = 27.12, ©({1.35 = 16,58, »°({2.3}) = 2144

where (S} = v{S:z, F— ). At an arbitrary instant e 0,4} we have

By (2 (D) = 2,? (@2 (&) + b,2D (1) 4 ¢,) = 15t - 30

ot (N} = 7.50 (1 — &) - 30 (1 — #); v (1) = ~T.722 — 1.16¢ - 8,88
o {2y = —T A2 — 6.76¢ + 13.88, v! (3) = —2.90¢* — 1,60z + 4.50
o ({1,20) = — 104847 — 16.84¢ + 27,12

of ({1,3)) = —7.42¢8 — Q.46¢ - 1658
o ({2,3)) = —6.9912 — 14.42¢ + 21.41
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where J(8§)=v(S;2 (1), T — ).
Let us solve problem DS for the distribution

2 = (10; 20; 7.50) = Ep (x9, T — to) (8.6)
Compute the barycentric coordinates of the distribution (see (6.2))

3
10.24

o 142 . 642 . _
M=o MW=z M

Find the side payment functions aif,1=1,2,3 (using formula (6.3)) corresponding to the
distribution §° (i.e., for t=10 we should have §°=v(i; 2, T — ;) +a° i=1,2,3)

af =ML [o (N; 2 (1), T—1)— D%

iy U 2O, T — 0] = 1128 — 2.2 +-1.12
Similarly, a,' = 6.1262 — 12.24¢+ 6.12, ot = 32 — 61 + 3.
Find the initial af (see (6.5))

- d . 13.20¢ + 3.40
B () = — [y @ O Ll G5 76, T— ) +a,17), = B2

Similarly,

o 2419 yon . —0.20t 4 7.60
ﬁﬁ (t)—-m; BS (t)——w

Note that the vector $°() = (Bi° (0, B° (1), Bs° (1)) satisfies conditions (2.2) and (2.3), i.e.,
for each t=[0,1] its components are weights.

By Theorem 5 the vector function p°(-) is a solution of problem DS for the distribution
t°.  Indeed, we can verify that

¥ S‘ B (%) hy (2 (%)) d¥ = (—6.6022 — 3,40t +- 10,
t (8.7)
— 1 19 — 20, 0.408— T.604+-7.50) = {v (15 2 (1), 1—1) + &', 1 =1,2, 3}

and so

Si B (1) hy (B(0) dr= B, (2(), 1 —1), 0t <1

Using p°(-) we can compute the dynamically stable payoffs earned by the players in any
time interval [0,¢] given the distribution }°. For instance, in {0, Y,] these payoffs are

S'/' B° (1) hy (7 (¥)) d1 = (3.35, 9.75, 3.77)
0

The vector of the remaining payoffs in the time interval [y, 1], i.e., (6.65, 10,25,
3.73), belongs to the set E,(z(Yy),%,), 1i.e., it is optimal in the same sense as the distribu-
tion E°.

Let us solve problem DS for the distribution &= C,(z, T — ). Let us investigate the
behaviour of the ratio yg(t) = ' (8)[a! (¥N)]* (see Theorem 6) for increasing :e[0,1]. For &:.
1S|=1,ys(® =0 for all t=I0,1], and for § =N,y () =1 for all te=[0,1]. Let |S|=2. We have

of (N) = 10.24 (t — )% a' ({1.2)) = 4.36 (t — 1)2,
af ({1.3}) = 3.20 (1 — 1)?, af ({2.3}) = 3.03 (t — 1)

We see that the ratio yg(8 for each coalition is constant along the optimal trajectory.
By Theorem 6, the solution of problem DS for ¢ e Cy(z, T —1t,) is its initial af.

We will show this for the distribution (8.6) (it can be checked that this distribution
belongs to the C-core C,(z, T —t)). We have to show that for any ¢« [0,1] the vector (8.7)
belongs to the current C-core. By Theorem 7, it suffices to check condition (4.2) for the
barycentric coordinates of the distribution §}°. It can be shown that these conditions indeed
hold. Therefore, the af f°() is indeed optimal for §&°.

Consider the Shapley vector. Since the functions ®®(@EZ(),T —1),i=1,2,3 are differen-
tiable with respect to t, the functions (7.1) exist, and therefore the vector @%(z, T — &)
is dynamically stable (see (7.2)). The trajectory z() is thus an optimal trajectory for
the Shapley vector.

The current Shapley vector has the form

DU(T(), T—t)={®P(2(), T—1), i=1,2 3)=(—4.06—
8.48¢ 4+ 12.54, —3.54% — 13.92¢ 4 17.46, 0.102 — 7.60t + 7.50)
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By formula (7.1), we obtain the optimal af @{" for the Shapley vector @ (x, T — f)
By (8124848 70841392 —02004-7.60\ 4, 4
w)*( 1530 * ~ 15t430 ' 15¢+30 ) SIS
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A DIFFERENTIAL GAME WITH A FUZZY TARGET SET
AND FUZZY STARTING POSITIONS

V.A. BAIDOSOV

A mathematical model of a situation in which it is required to develop a
single control strategy for a fuzzy set of objects in the presence of
noise is considered. The control objective is to hit a fuzzy target set
at a given instant of time or to evade the target set. The problem
reduces to constructing a universal optimal strategy for a differential
game whose payoff function is the membership function of the target set.

1. consider the differential game

X = f{t, x, u, v} (1.4)
x=R", w(=EP v

where P and @ are compacta in R" and RY. We assume that the right-hand side of (l.1l) satisfies
the canonical conditions /1, p.37, 38/ and that the small-game saddle-point condition holds

/1, p.79/. The game is considered in the time interval T’é—= {t,, Bl
Let u: T X R* - P be some positional strategy of the first player. We denote by K, [t,,
t] (x,) the set of constructive motions /2, p.33/ x(.) generated by the strategy u in the
time interval l&, t] and satisfying the initial condition x ({,) = x,. Let the set X be the
set of all non-empty subsets of the space X. We define the set-valued mapping
K, (1 ty): B" —>set R", 1>1,

setting
Ko (610X = (X (1) X () € K, [tor 1] (o))

We similarly define the set-valued mappings K, {¢ t,) for the second-player strategy v.

Let F(X) Dbe the family of fuzzy sets in the space X, pa the membership function of a
fuzzy set. The value of ps at the point X will be denoted by {pay XD

If some mapping

n. R* > F(R™) (1.2}
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